Scaling Data Tokenization for Al
Systems

Rajni Pawar Luke Logan

Jamie Cernuda Garcia

Xian-He Sun

Anthony Kougkas

Gnosis
Research
Center

Introduction

1. Alis becoming the primary user of raw data — either for training
or inference (e.qg., RAG)

2. Data for Al models are tokenized before they can be used.

3. Tokenization is an expensive process requiring reading and
parsing large datasets.

4. This data-intensive operation causes performance bottle-
necks, especially for massive datasets that don't fit in memory.

5. Current I/O libraries are not optimized for Al workloads.

Proposed Solution

Labios, an active storage system that will:
1. Apply operations to data while it is being transferred.
2. Transparently tokenize data during I/O operations.

3. Serve as an Al-ready storage system with custom tokenization
operators.

4. Built on the loWarp framework for optimized I/O operations.

5. Eliminate redundant tokenization during model training and
inference.

Making I/O Stacks Ready For Al

With Labios

(Optimized Approach)

Before Labios
(Traditional Approach)

= Traditional Approach: _ _
. . Data Generation Data Generation
Tokenization performed
on every data load. \ 4 Y
CPU-intensive at runtime. Raw Storage [Store and Tokenize]
Longer wait times for Al Sl L
model responses. \ 4

[Load Data & Tokenize] Direct Loading

(Bottleneck)

= Optimised Approach:
Tokenization performed Y Y

Only once. No pr.ocessmg Al Processing] [Al Processing]
overhead at runtime.
Immedlate data aval lablllty * Long loading times * Instant loading
for AI MOdelS » High CPU usage * Lower CPU usage
* Repeated work » Better performance
Results

Cost of running LangChain on 1GB data with synchronous
tokenization vs Labios

160

- Synchronous tokenization
before inference is 152.31
seconds

Y
]
o

- Labios asynchronously
tokenizes and stores data
before-hand.

Execution Time (seconds)
3
|

404

- Labios reduces runtime to
65.33 seconds

|
Traditional With LABIOS Concept

rpaward@hawek.iit.edu, llogan@hawk.iit.edu,
jcernudagarcia@hawk.iit.edu, sun@iit.edu, akougkas@iit.edu

StoreHub

The Cost of Live Tokenization

Standard /O patterns involve multiple copies of data across
pipeline. As Al datasets grow In size, tokenization becomes an
Increasing bottleneck.

Tokenization time increases linearly with dataset sizes. Hence,
RAG processing time increases significantly with larger datasets.

Preprocessing tokenization during write operations can greatly
reduce inference and training times.

HDF5 Processing Performance Comparison

TO 0T GB
12 1 —e— Tokenization Time
—fi— RAG Time

10 A

Processing Time (seconds)

Dataset Size (GB)

Labios Workflow

labios::File file;
file.write("/path/to/sample.txt?sentencepiece",
buffer, size);

T -

= \\‘
9

l:,j_ ;—f | Pre-tokenized Data | .

Read API

'
[@ RAG System]

Python example using Labios API
from labios import Labios

b = Labios()
tokens = 1b.labio_read("/path/to/sample.txt")

Conclusion

Benefits with LABIOS:

1. Reduced latency for model training/inference by eliminating
tokenization, resulting in performance improvement by 57.1%.

2. Lower resources required during training/inference pipelines.
3. Improved throughput for RAG-based applications.

4. Ability to handle datasets larger than available memory.

5. Parallel tokenization during I/O operations

6. Reduced computational overhead on Al frameworks

Acknowledgments

This material is based upon work supported in part by the Na-
tional Science Foundation (NSF), Division of Computer and Net-
work Systems (CISE/CNS), under Grant CCRI-CISE 2346504,
and the Department of Energy (DOE), Office of Advanced Scien-
tific Computing Research (ASCR), under Grant DE-SC0024593.

